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In an extension of the investigations1,2 devoted to construct-
ing asymptotic expansions of the solution of the heat conduction
problem for thin single-layer plates with respect to a small param-
eter, the ratio of the thickness of the structure to its characteristic
dimension in plan, in this paper we construct asymptotic expan-
sions of the solutions of the steady heat conduction problem for

laminated anisotropic plates. This solution, in particular, in thin-
walled laminated structures outside the limits of the boundary
layer, enables one to estimate with what accuracy the temperature
can be specified to be constant or distributed linearly, quadrat-
ically or in other forms over the thickness of the plate and its
layers.

1. Formulation of the heat conduction problem for
laminated plates

We will consider a plate of constant thickness H̄, consisting of M
anisotropic non-uniform layers, also of constant thickness. We will
connect with the plate a rectangular Cartesian system of coordi-
nates x̄1, x̄2, x̄3 such that the reference plane x̄3 = 0 coincides with
the lower face plane of the plate. We will number all the layers in
succession from bottom to top, i.e., the first layer will be the lowest
one, while the M-th layer will be the upper one. The conditions for
ideal thermal contact are satisfied at the boundaries between the
layers.
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With these assumptions, the equation of steady heat conduction
and the relations of Fourier’s law for the m-th layer have the form
(1.1)

where x̄ = {x̄1, x̄2, x̄3}, T̄m is the temperature of the m-th layer, Q̄ m is
the power density of the internal heat sources in the m-th layer, �̄

m
ij

are the thermal conductivities of the material of the m-th layer (in
general all these quantities are functions of all the spatial variables),
H̄m = const > 0 is the y coordinate of the boundary between the m-
th and (m + 1)-layers (H̄m ≡ 0, H̄m = H̄), and Ḡ is the region occupied
by the plate in plan. Here and henceforth dimensional functions and
quantities will be given a bar, while the dimensionless functions
and quantities corresponding to them will be denoted by the same
symbols without a bar.

On the contact surfaces x̄3 = H̄m of the m-th and (m + 1)-layers
the following conditions for the heat-flux and temperature solu-
tions to be matched must be satisfied

(1.2)
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The following boundary conditions of general form are specified on
the faces of the plate (x̄3 = 0, H̄)

(1.3)

The superscript plus corresponds to the upper face of the plate,
while the superscript minus corresponds to the lower face of the
plate, Q̄± are the projections of the heat-flux vector onto the direc-
tion of the outward normal, specified on the faces, �̄± are the
coefficients of convective heat exchange with the environment on
the sides of the upper and lower faces, T̄±∞ is the temperature of
the environment on the sides of the upper and lower faces, and
�±, �± and �± are switching functions, which enable any type of
boundary conditions on the faces to be specified.

The following boundary conditions, similar to (1.3), are also
specified on the end face of the plate

(1.4)

where ni are the components of the vector of the unit normal to the
end face of the plate (n3 = 0), q̄m is the specified heat flux through
the end face of the m-th layer, �̄m is the Newton heat-exchange
coefficient between the m-th layer and the environment on the
end-face side, T̄∞ is the temperature of the environment on the
end-face side, �, � and � are the switching functions, which enable
any type of boundary conditions on the end face to specified, and
�̄ is the contour which bounds the region Ḡ.

We will introduce the following dimensionless independent
variables and small parameter

(1.5)

and also the following notation
(1.6)

where a is the characteristic dimension of the region Ḡ, T̄∗ is a cer-
tain characteristic value of the temperature of the structure (for
example, the temperature of the natural state), and �̄∗ is the char-
acteristic value of the thermal conductivity of the materials of the
layers of the plate (for example, the maximum over the layers of the
greatest of the principal values of the thermal-conductivity tensor
�̄

m
ij ).
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The heat conduction problem can be written in dimensionless
form as follows (the subscript after the comma denotes partial dif-
ferentiation with respect to the corresponding variable xi (i = 1, 2,
3)):

(1.7)

(1.8)

(1.9)

(1.10)

As usual, we will assume that the temperature T̄ differs only slightly
from the value T̄∗ (otherwise it would be necessary to take into

account the thermal sensitivity of the materials of the plate lay-
ers, which is outside the framework of the present investigation).
If we assume that a change in the plate thickness H̄ corresponds
to a change in the small parameter � (the values of H̄m then
vary in proportion to the change in H̄, i.e. Hm = H̄m/H̄ = const)
for the geometry of the structure in plan (for a fixed charac-
teristic dimension a), then as � → 0 the order of the quantities
�m

ij , Q m, T±∞, �±, T∞, qm, �m(i, j = 1, 2, 3, 1 ≤ m) is equal to unity.
The presence of the small parameter � in higher derivatives in

problem (1.7)–(1.10) indicates that the problem is singularly per-
turbed, and hence its solution will be investigated in the form

(1.11)

where Tm∗ is the main temperature field in the m-th layer and Tm
b

are the corrections to the main temperature field in the boundary
layer in the neighbourhood of the end face of the plate.

Further, we will construct the main temperature field Tm∗ in the
plate by the method of asymptotic analysis. Different asymptotic
expansions must be used for different boundary conditions on the
faces (1.9).
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2. The case when the heat fluxes are specified on the faces

If only the heat fluxes (�± = 1, �± = 1, �± = 0) are specified on both
faces, we will choose as the outer expansion

(2.1)

After substituting expansion (2.1) into Eq. (1.7) and conditions
(1.8)–(1.10) we collect terms in like powers of � in the relations
obtained. This gives a chain of inequalities for determining the
functions Tm

k
(x)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)
(2.9)

where

(2.10)

and �ik = (i = 1, 2, 3; k = 1, 2, . . .) is the Kronecker delta; in the case
considered �± = 1.

Integrating Eq. (2.2), taking conditions (2.3) and (2.4) into
account and also the conditions �m

33 > 0 (by virtue of Onsager’s
Mathematics and Mechanics 72 (2008) 92–101

postulate3) we obtain

(2.11)

where �0 is an arbitrary function, to be determined subsequently.
It follows from (2.11) that boundary condition (2.5) on the end face
of the plate is satisfied identically.

We will introduce the following notation

When k = 1, integrating Eq. (2.6) with respect to the variable x3, and
taking Eqs. (2.11), (2.7), (2.8) and (2.10) into account, we obtain

(2.12)

Hence,

(2.13)

where

(2.14)

and �1(x1, x2) ≡ T1
1 (x1, x2, 0) is an arbitrary function, to be deter-

mined.
We express the derivative Tm

1,3 from Eq. (2.12) and substitute it
into condition (2.9) for k = 1. This condition then takes the form

(2.15)

Since the materials of the layers are assumed to be arbitrary (and,
in general, also non-uniform in thickness), while the function �0 is
independent of the variable x3, boundary condition (2.15) cannot
be satisfied exactly at all points of the end face of the plate, and
hence here and henceforth the boundary conditions on the end
face of the plate (2.15) and (2.9) (k = 2, 3, . . .) will be satisfied in

the integral sense (by integrating these equations over the plate
thickness), which is a necessary and sufficient condition for the
attenuation of the boundary layers.1

Integratng relation (2.15) over the plate thickness, we obtain the
following boundary condition on the end face for the function �0

(2.16)

When k = 2, Eq. (2.6), in which we express the derivative Tm
1,3 from

Eq. (2.12), can be converted to the form
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The differential operator ∂m(·) is defined as (the variable x3 is the
parameter)

(2.17)

Integrating the last equation with respect to x3, and taking into
account conditions (2.7) and the first condition of (2.8) (k = 2), we
obtain

(2.18)

where

(2.19)

The differential operator Dm(·) has the form

(2.20)

It follows from Eq. (2.18) when m = M and x3 = HM = H and from the
second equation of (2.8) (k = 2), taking relations (2.19) and (2.20)
into account, that

(2.21)

This equation defines the function �0(x1, x2) for boundary condition
(2.16) on the contour �. Knowing the function �0 from boundary-
value problem (2.21), (2.16), we obtain, by virtue of the relations
(2.14), (2.19) and (2.20), the known right-hand side of Eq. (2.18) and
the known function Fm

1 (x) in equality (2.13).
We will introduce the following notation

Substituting expression (2.13) into Eq. (2.18) and taking Eq. (2.10)

into account, we obtain

(2.22)

(the first term on the right-hand side is a known function). Inte-
grating this equation with respect to x3, taking the second relation
of (2.7) into account (k = 2), we obtain

(2.23)

where

(2.24)

and �2(x1, x2) ≡ T1
2 (x1, x2, 0) is an arbitrary function, to be deter-

mined.
We substitute expression (2.22) into the boundary condition on

the end face (2.9) (k = 2) and integrate it over the plate thickness,
Mathematics and Mechanics 72 (2008) 92–101 95

taking equality (2.13) into account. We obtain

(2.25)

In view of the formal similarity of relations (2.6)–(2.9) for k = 2
and k ≥ 3 and Eqs. (2.23), (2.13) and (2.18), (2.12) we can con-
struct a solution for boundary-value problem (2.6)–(2.9) for k ≥ 3 by
mathematical induction. Suppose, for a certain k ≥ 3, the following
assumptions hold

(2.26)

(2.27)

where Q m
k−1(x) and Fm

k−2(x) are assumed to be already known func-
tions. (When k = 3 these assumptions hold since Eqs. (2.18) and
(2.13) hold and the functions Q m

2 and Fm
1 are known from relations

(2.19) and (2.14) and the solved boundary-value problem (2.16),
(2.21).) We will show that, for the next value of k, the structure
of the solution is similar to Eqs. (2.26) and (2.27).

We express the derivative Tm
k−1,3 from Eq. (2.26) and substitute it

into Eq. (2.6). Then, after using Eq. (2.27) and taking relation (2.10)
into account we obtain

Integrating this equation with respect to x3, taking Eqs. (2.7), (2.8)
and (2.10) into account we will have
(2.28)

where

(2.29)

The differential operators ∂m(·) and Dm(·) are defined by formulae
(2.17) and (2.20).

From relations (2.28) with m = M and x3 = HM = H and from the
second condition of (2.8), taking definition (2.20) into account, it
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follows that

(2.30)

where the right-hand side is a known function of the variables x1
and x2, since the functions Q m

k−1 and Fm
k−2 are assumed to be already

known (see (2.26) and (2.27)).
When k = 3 Eq. (2.30) defines the function �1(x1, x2) for boundary

condition (2.25), specified on the contour �. When k ≥ 4 we obtain
the boundary condition for Eq. (2.30) by integrating Eq. (2.9) over
the plate thickness for the previous value of k (replacing k by k-1 in
(2.9)), then, eliminating the derivative Tm

k−1,3 from (2.9) using (2.26)
and using Eq. (2.27), we will have

(2.31)

We express the derivative Tm
k−1,3 from Eq. (2.26) and integrate the

equation obtained with respect to x3. Then, taking relation (2.27)
into account we obtain

(2.32)

where
(2.33)

and �k−1(x1, x2) ≡ T1
k−1(x1, x2, 0) is an arbitrary function, to be

determined. (When k = 3 Eqs. (2.32) and (2.33) are identical with
(2.23) and (2.24) respectively).

By determining the function �k−2 from boundary-value prob-
lem (2.30), (2.25) (for k = 3) or (2.30), (2.31) (for k ≥ 4), we will
have, by virtue of relations (2.33) and (2.29) and assumptions (2.26)
and (2.27), the known functions Fm

k−1 and Q m
k

in Eqs. (2.28) and
(2.32), which formally are completely identical with (2.26) and
(2.7). Hence, assumptions (2.26) and (2.27) also remain true for
the next value of k, and hence, using the scheme (2.26)–(2.33) we
can construct a solution of problem (2.6)–(2.9) for a new value of
k, etc.

The proposed algorithm for determining the basic three-
dimensional temperature field in a laminated anisotropic plate
shows that, to calculate the unknown coefficients Tm

k
in asymptotic

expansion (2.1) for each k = 0, 1, 2, . . ., it is necessary to integrate the
two-dimensional equations (2.21) and (2.30), which differ solely in
Mathematics and Mechanics 72 (2008) 92–101

the known right-hand sides and take the form

(2.34)

The function Wk(x1, x2) is defined by the right-hand side of Eq.
(2.21) for k = 2 and the right-hand side of Eq. (2.30) for k ≥ 3.

In addition to Eq. (2.34), we will consider the following equation

(2.35)

where the variable x3 serves as the parameter, while the differential
operator on the left-hand side is identical with the integrand in
formula (2.20). (In particular, for a single-layer plate (M = 1), the
thermal conductivities of which are independent of the variable
x3, the left-hand side of Eq. (2.34), after dividing by H, reduces to
the left-hand side of Eq. (2.35).) The characteristic equation for Eq.
(2.35) has the form

(2.36)

where x′
2 = dx2/dx1 is a derivative which specifies the direction of

the characteristic for fixed x3. The discriminant of this equation is

where det(�m
ij ) is the determinant of the thermal conductivity

matrix. According to Onsager’s postulate,3 �m
33 > 0, det(�m

ij ) > 0,
and hence D < 0. Consequently, Eq. (2.35) is elliptic, and the fol-
lowing inequality holds for the coefficients in Eq. (2.36) for any x3

We will integrate this inequality over the plate thickness and apply
Bunyakovskii’s inequality to the left-hand side. We obtain
(2.37)

The last inequality in the chain is a consequence of the fact that, by
virtue of Onsager’s postulate, the factors �̂m

11 and �̂m
12 are positive

for all x3.
Using inequaity (2.37) we can determine the type of resolvent

(2.34). The discriminant of its characteristic equation has the form

(2.38)

Hence, taking inequality (2.37) into account we obtain D < 0. Con-
sequently, the resolvents (2.34), (2.21) and (2.30) are second-order
elliptic equations, which depend on the two variables x1 and x2.

We will discuss some properties of asymptotic expansion (2.1).
Using expansion (2.1) and Eqs. (2.11), (2.13), (2.14), (2.23) and (2.24),
we can assert that when the materials of the layers are of uni-
form thickness (�m

ij,3 = 0, i, j, = 1, 2, 3, 1 ≤ m ≤ M), when only the
heat fluxes on the faces of the plate outside the limits of the
boundary layer are given, and which arise in the neighbourhood
of the front faces, the temperature, with an accuracy of O(�) is dis-
tributed linearly over the thickness of each layer and is distributed
piecewise-linearly over the thickness of the whole packet (here, in
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expansion (2.1) we must confine ourselves to the first two terms),
and with an accuracy of O(�3) the temperature over the thickness
of each layer has a quadratic distribution and has a piecewise-
quadratic distribution over the thickness of the whole laminated
structure (in decomposition (2.1) we must retain three terms).

It follows from expansion (2.1) that when Q± 	= 0

(2.39)

i.e., when � is reduced the temperature Tm∗ in each layer increases
in modulus without limit. This fact has a physical explanation,
namely: a reduction in the thickness of the plate and the layers
corresponds to a reduction in � when the remaining input data
of the problem are fixed (the dimensions of the plate in plan, the
power density of the internal heat sources, and the heat fluxes on
the faces). Since the characteristic dimension of the plate a and
the heat fluxes on the faces Q± are fixed, the dimensionless inflow
(outflow) of heat through the surfaces is fixed:

(2.40)

When the thickness of the plate and the layers are reduced (when �
is reduced) the volume of the structure and the area of the faces of
the plate and the layers are reduced, and hence, in order to ensure
a fixed outflow (inflow) of heat through these surfaces, equal to the
value (2.4), when � decreases one must increase the modulus of the
components of the heat flux in the plate, which lie in the plane of
the structure, and of course, by Fourier’s law, the modulus of the
temperature gradient must increase without limit. A consequence
of this will be an unlimited increase the modulus of the temperature
as � → 0, which relation (2.39) also reflects.

It follows from expansion (2.1) and Eqs. (2.21) and (2.30) (when
k = 3), that the contribution to the temperature from the heat fluxes
Q±, specified on the faces of the plate, with respect to �, is an order
of magnitude greater than the contribution from the internal heat
sources Qm, since Q± define the function Tm

0 (via �0) and subsequent
Tm

k
(k = 2, 3, . . ., see Eq. (2.21), while Qm specifies the function Tm

1
(via �1) and subsequent Tm

k
(k = 2, 3, . . ., see Eq. (2.30)). This fact

also has a physical explanation. When � is reduced the volume of
the plate and layers is also reduced, and of course, by virtue of the
fact that Qm = O(1) when � → 0 the quantity of heat QV produced in
unit volume over the whole plate by the internal heat sources Qm

is reduced, and QV → 0 when � → 0, since the volume of the plate
approaches zero. The quantity of heat Q supplies to the structure
*
in unit time due to the heat fluxes Q± is fixed and is independent
of � (see Eq. (2.40)), and hence the heat fluxes Q±, specified on the
faces, turn out to have a greater influence on the temperature than
the internal heat sources.

If the faces of the plate are thermally insulated (Q± = 0), we
obtain from Eqs. (2.13), (2.16), (2.21), (2.11), (2.19) and (2.14)

(2.41)

but, when there are internal heat sources (Qm 	= 0) it follows from
Eqs. (2.13), (2.24), (2.25) and (2.30) (when k = 3) in the general case
that

(2.42)

It follows from relations (2.1), (2.23), (2.41) and (2.42) that in the
case when the materials of the layers are of uniform thickness
�m

ij,3 = 0, i, j, = 1, 2, 3, 1 ≤ m ≤ M, with an accuracy of O(�2) we
can regard the temperature as being distributed linearly, but not
constant, over the thickness of each layer (piecewise-linear over
Mathematics and Mechanics 72 (2008) 92–101 97

the thickness of the packet of layers); with an accuracy of O(�) we
can regard the temperature as being constant over the thickness of
the layers and the plate outside the limits of the boundary layer.

If, at each point of each layer of the plate, one of the principal axes
of anisotropy coincides with the x3 direction, we have �m

31 = �m
32 =

0, 1 ≤ m ≤ M. (Plates, the layers of which are reinforced in planes
parallel to the plane considered x3 = 0, for example, possess such
properties.) In this case, when the faces are thermally insulated
(Q± = 0) and there are internal heat sources (Qm 	= 0) we obtain from
relations (2.24), (2.14) and (2.19)

(2.43)

Consequently, when �m
31 = �m

32 = 0 and Q± = 0, it follows from Eqs.
(2.1), (2.11), (2.13), (2.23) and (2.43) that, with an accuracy of
O(�), the temperature can be regarded as constant over the plate
thickness outside the limits of the boundary layer even when the
materials of the layers are of non-uniform thickness (�m

ij,3 	= 0).
If the faces are not thermally insulated Q± 	= 0, and the internal

heat sources are uniformly distributed over the thickness of the
layers (Q m

3 = 0), then, when �m
31 = �m

32 = 0, 1 ≤ m ≤ M, by virtue
of relations (2.29), (2.32), (2.33), (2.14), (2.19) and (2.24) it follows
from expansion (2.1) that, with an accuracy of O(�), the temperature
distribution over the thickness of the layer, outside the limits of the
boundary layer, has a quadratic form (a piecewise-quadratic form
over the thickness of the laminated plate as a whole).

It was shown in Ref. 2 that, for a single-layer plate, uniform over
the thickness, when there are no internal heat sources, with thermal
insulation of the faces and �31 = �32 = 0 outside the limits of the
boundary layer, the temperature in the plate is constant over the
thickness. The same result is obtained for a single-layer (M = 1) plate
from relations (2.11)–(2.33) when

since F1
k

≡ 0 and T1
k

≡ �k(x1, x2) (k = 0, 1, 2, . . .).
In the case of a laminated plate (M ≥ 2) with �m

31 = �m
32 =

0, �m
ij,3 = 0 (i, j, = 1, 2, 3), thermal insulation of the faces Q± ≡ 0

and no internal heat sources (Qm ≡ 0, 1 ≤ m ≤ M), the temperature
outside the limits of the boundary layer cannot be assumed to be
constant over the thickness of the structure. This is due to the non-
uniformity of the material over the thickness of the whole packet of
layers and follows directly from relations (2.29), (2.32), (2.33) and

(2.43), whence it follows that the functions Q m

3 , Fm
3 and Tm

3 depend
on the transverse coordinate x3. Hence, in a laminated plate with
Qm ≡ 0, Q± ≡ 0 the temperature can only be constant over the thick-
ness when there is also thermal insulation of the end faces of the
structure (qm ≡ 0, � = � = 1, � = 0 under conditions (1.10)) or when a
constant temperature (Tm = T∞ = const, � = � = 0, ��m = 1 under con-
ditions (1.10)) is specified on the end face; however, in these cases
since the solution of boundary-value (1.7)–(1.10) is unique, the tem-
perature everywhere in the plate is constant (Tm(x) = T∞ = const,
1 ≤ m ≤ M).

3. The case of heat exchange due to convection

If heat exchange occurs on the faces of the plate due to convec-
tion (possibly with a simultaneous inflow (outflow) of heat due to
specified heat fluxes), i.e. boundary conditions of the general form
(1.9) occur, where the conditions �+ = 0 or �− = 0 are allowed (but
not the simultaneous equality �+ = �− = 0, which corresponds to the
case of boundary conditions with respect to the heat flux, consid-
ered in Section 2, then we choose as the outer asymptotic expansion
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of the temperature, unlike expansion (2.1),

(3.1)

After substituting expansion (3.1) into Eq. (1.7) and conditions
(1.8)–(1.10), we collect terms of like powers of � in the relations
obtained. This gives a chain of equalities for determining the func-
tions Tm

k
(x), where relations (2.2)–(2.5) and (2.7) remain true (for

k ≥ 1), to which we must add the equations

(3.2)

(3.3)

(3.4)

where we must take relation (2.10) into account.
We will construct a solution of this system, assuming that the

equalities �− = 0 and �+ = 0 are not satisfied simultaneously, i.e.
boundary conditions in the form of known values of the temper-
ature T±∞ are not specified simultaneously on both faces. To fix our
ideas, we will assume that �− = 1 (convective heat transfer or the
heat flux is specified on the lower face).

Integrating Eq. (2.2), taking conditions (2.3), (2.4) into account
m
and assuming �33 > 0, we obtain Eq. (2.11), from which it follows

that condition (2.5) is satisfied identically on the face of the plate.
Integrating Eq. (2.6) (k = 1) with respect to the variable x3, and tak-
ing relations (2.11), (2.7) and (3.2) into account, we obtain

(3.5)

where

(3.6)

Since the switching functions can only take the values �+ = 0, �± = 0
or �+ = 1, �± = 1 and �+ and �+ cannot be equal to zero simulta-
neously, and also, by virtue of the assumptions made above, the
equalities �− = 0 and �+ = 0 cannot be satisfied simultaneously, the
quantity � is non-zero, and the functions �0 and Q1 in relations
(2.11) and (3.5) are uniquely defined by equalities (3.6).
Mathematics and Mechanics 72 (2008) 92–101

Expressing the derivative Tm
1,3 from Eq. (3.5) and integrating the

relation obtained with respect to x3, we will have representation
(2.13) or Tm

1 , where

(3.7)

is a known function by virtue of Eqs. (3.6).
The boundary condition on the end face (3.3) (k = 1) after sub-

stituting the function Tm
0 = �0 from the first equality of (3.6) and

the derivative Tm
1,3 from Eq. (3.5) into it, can be satisfied identically

(both in the local and in the integral sense) only in exceptional cases.
In general, the boundary condition on the end face of the plate can
only be satisfied after considering the boundary layers.

We introduce the following notation

and we will assume below that for any k ≥ 2 the function Tm
k−2

is already known and equalities (2.26) and (2.32) hold, where
the functions Q m

k−1(x) and Fm
k−1(x) are also already known (for k = 2

these assumptions are justified in view of the fact that equalities
(3.5)–(3.7), (2.11) and (2.13) are satisfied); then, taking relations
(2.10) and (2.26) into account, Eq. (3.4) can be rewritten in the form

where the right-hand side is known. Integrating this equation over
the variable x3 and taking relation (2.10) into account, we obtain

(3.8)

where

(3.9)
(3.10)

Q 0
k

(x1, x2) ≡ Q 1
k

(x1, x2, 0) is a function to be determined and �m
k

is
a known function.

Substituting expressions (2.32), (3.8) and (3.9) into boundary
conditions (3.2) (k ≥ 2), we obtain (�− = 1)

Hence

(3.11)
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The denominators on the right-hand sides of Eqs. (3.6) and (3.11)
are identical and non-zero, and hence the functions �k−1 and Q 0

k
are uniquely defined by Eqs. (3.11), and in view of equalities (3.9),
(3.10) and (2.32) and the assumption made above that the function
Fm

k−1 is already known, we obtain the functions Tm
k−1 and Q m

k
known

in relations (3.8). Expressing the derivative Tm
k,3 from Eq. (3.8) and

integrating the relation obtained over x3, we will have

(3.12)

where

(3.13)

�k(x1, x2) ≡ T1
k

�k(x1, x2, 0) is a function to be determined and Fm
k

(x)
is a known function.

By virtue of equalities (2.32) and (3.9)–(3.13) we obtain that
the assumptions made above also hold for the next value of k, and
hence, using the scheme (2.32) and (3.9)–(3.13) we can construct a
solution of problem (3.2), (3.4) for the new value of k, etc.

When k ≥ 2, as also for k = 1, boundary condition (3.3), after
substituting into it the function Tm

k−1(x) from Eq. (2.32) and
the derivative Tm

k,3 from Eq. (3.8), taking equalities (3.13) and
(3.9)–(3.11) into account, can be satisfied identically (both in the
local and integral sense) only in exceptional cases. In the general
case, the boundary conditions on the end faces of the plate k ≥ 2
can only be satisfied after considering the boundary layers.

Hence, when at least on one of the faces of the plate (for exam-
ple, the lowest one) the convective heat exchange is specified, all the
unknown functions in expansion (3.1) are defined by the equalities
(2.11), (2.13), (3.7), (3.12) and (3.13), in which the arbitrary func-
tions are specified by the finite relations (3.6) and (3.11), and there
is no need to determine them from the two-dimensional elliptic
equations of the form (2.21), (2.30), (2.34), as was done in the case
when only the heat fluxes Q± were specified on the faces.

It follows from relations (2.11), (3.6) and (3.9)–(3.12) that, in the
case when boundary conditions of general form (1.9) are specified
on the faces, like when only the heat fluxes are specified, the con-
vective heat exchange and heat fluxes Q± on the faces of the plate
have an order of magnitude, with respect to �, greater effect on the
temperature than internal heat sources, since the fluxes Q ± and
the convective heat exchange determine the function Tm

0 (see rela-

tions (2.11) and (3.6)), and all the subsequent Tm

1 , Tm
2 , . . . , while

the power density of the internal heat sources Qm determine Tm
1

(see relations (2.13), (3.10) and (3.11) with k = 2) and all subsequent
functions Tm

2 , Tm
3 , . . .. This fact has the same physical explanation

as in the case when only the heat fluxes Q± are specified on the
faces.

It follows from relations (2.11), (2.13), (3.6), (3.7) and
(3.9)–(3.13), when the materials of the layers are uniform over the
thickness (�m

ij,3 = 0), that, when the convective heat transfer on the
faces is specified, the temperature outside the limits of the bound-
ary layer can be assumed to have a linear distribution over the
thickness of the layers with an accuracy of O(�2) (a piecewise-linear
distribution over the thickness of the whole packet); moreover,
when the power density of the internal heat sources have a uniform
distribution over the thickness of the layers (Q m

3 = 0), the temper-
ature outside the limits of the boundary layer, with an accuracy of
O(�3), can be specified as having a quadratic distribution over the
thickness of each layer (a piecewise-quadratic distribution over the
thickness of the laminated plate).

An attempt to construct an asymptotic expansion of the solu-
tion of the problem of the heat conduction of a laminated plate for
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boundary conditions of general form (1.9) in the form (2.1) leads
to the equality Tm

0 ≡ 0, i.e., there are no terms of the order of 1/�
in expansion (2.1). Consequently, in the final analysis we arrive at
an expansion of the form (3.1). The absence of a term O(1/�) in the
asymptotic expansion of the temperature when there is convective
heat transfer on the faces has a physical explanation. When � is
reduced the thickness and the area of the end faces of the plate
(and the layers) are reduced, and also the volume of the structure,
and hence as � → 0 the inflow (outflow) of heat through the end
face and the heat production due to the internal sources (sinks)
are reduced in modulus. However, for a certain finite temperature
a thermal balance is established between the inflow (outflow) of
heat through the faces due to the heat fluxes Q± and convective
heat transfer (�+ 	= 0 and/or �− 	= 0). This balance would be impos-
sible if a term O(1/�) were present in the asymptotic expansion of
the temperature, since in this case we would obtain |Tm∗ | → ∞ as
� → 0 and the outflow (inflow) of heat due to convective heat trans-
fer would be unlimitedly large in modulus for a limited and fixed
inflow (outflow) of heat due to the fluxes Q± (see Eq. (2.40)).

In the boundary conditions of general form (1.9), the dimension-
less coefficients �±, which characterize the Biot criterion,1 may be
of the order of unity, and may be large and small compared with
unity. Thus, for a plate with copper outer layers (�̄

1
ii = �̄

M
ii = 400

W/m K, Ref. 4) with a characteristic dimension in plan of a = 1 m
for free convection of water (�̄± = 500 W/m2 K, Ref. 5) the dimen-
sionless heat exchange coefficient �± = 5/4 (see formulae (1.6); for
free convection of gases (�̄± = 30 W/m2 K, Ref. 5) for the same
plate we obtain �± = 3/40; in the case of forced convection of water
(�̄± = 104 W/m2 K, Ref. 5) for the same plate we have �± = 25, while
for a plate with steel outer layers (�̄

1
ii = �̄

M
ii = 45 W/m K, Ref. 4) of

the same dimensions in plan �± = 222. Consequently, under cer-
tain conditions of heat transfer on the faces, the dimensionless
quantities �± can be considered to be small or large parameters
independent of �, and of course, instead of expansion (3.1) we can
construct an asymptotic expansion of the temperature with respect
to three independent parameters �, �+, �− (the corresponding cal-
culations are not given here). However, the quantities �± do not
occur in the heat-conduction equation (1.7), and only determine
the boundary conditions (1.9), and hence this expansion does not
lead to any essential simplification of the two-dimensional resol-
vents for the coefficients of the asymptotic series, but generates a
long chain of inequalities. The fundamental asymptotic properties
determined by the parameters �± can be followed using Eqs. (2.11),
(2.13), (3.6), (3.7) and (3.9)–(3.13).
If the convective heat exchange (�± = 1, �± = 1) is specified on
both faces, where at least one of them is intensive (�+ 
 1 or �− 
 1,
or �± 
 1) and Q± 	= 0, the first term on the right-hand side of the
first equation of (3.6) is a small quantity and approaches zero in
the limiting case �+ → ∞ or �− → ∞, or �± → ∞, i.e. by virtue of Eq.
(2.11) the contribution to Tm

0 from the heat fluxes Q± is small, but it
may have a considerable effect on the functions Q1, Fm

1 and Tm
1 (see

relations (3.6), (3.7) and (2.30)). The second term on the right-hand
side of the first equation of (3.6) for any (small or large) values of �±

defines the mean value of the dimensionless temperatures of the
surrounding medium above and below the plate, by the mixture
rule. If there is intensive convective heat exchange �± � 1 on both
faces, then when Q± 	= 0 the first term on the right-hand side of
the first equation of (3.6) may be large in modulus, which increases
without limit in the limiting case �± → 0. Then the function Tm

0 ≡ �0
is of the order of 1/�± as �± → 0. If there is no heat flux, then
Tm

0 = O(1) when �± → 0 (see relations (3.6) and (2.11) when Q± = 0).
The functions �k, Tm

k
possess similar asymptotic properties when

k ≥ 1 (see relations (3.9)–(3.13)).
If, to meet certain requirements, for example, a lifetime guaran-

tee, it is necessary to maintain a fixed temperature T±∞ on one of the
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faces of the plate, for example, the upper face (x3 = H), while on the
second face, for example, the lower face (x3 = 0), the convective heat
exchange (�+�+ = 1, �+ = �+ = 0) is specified, it follows from relations
(3.6) and (2.11) that

Hence, we also obtain from relations (3.7) and (2.13) that, for
�− 	= 0 the function Tm

1 depends on �−. Similarly, a linear depen-
dence of the functions Tm

k
on �− when k ≥ 0 follows from relations

(3.9)–(3.13). Consequently, if intensive convective heat exchange
(�− 
 1, �− = 1) is specified on the lower face, we obtain from rela-
tions (3.6), (3.7) and (3.9)–(3.13) that the function Tm

k
(k ≥ 1) can

have values of greater modulus, which increase without limit in
the limiting case when �− → ∞. For a small value of �− � 1 (�− = 1)
from the same equations we obtain Tm

k
≡ O(1) when �− → 0 (k ≥ 1),

i.e. all the coefficients Tm
k

of asymptotic series (3.1) remain bounded
in modulus.

4. The case of boundary conditions of the first kind

If boundary conditions of the first kind (with respect to the
temperature)

are specified on both faces, we must put �± = �± = 0, �±�± = 1 in
boundary conditions (1.9). Then the asymptotic expansion must
be constructed in the form (3.1), while in the chain of equalities
(2.2)–(2.5), (2.7) and (3.2)–(3.4) we must use the following relations

(4.1)

instead of (2.4) and (3.2).
Integrating Eq. (2.2), taking conditions (2.3) into account, we

obtain
(4.2)

where Q0 is a function to be determined. We will integrate the sec-
ond equality of (4.2) taking conditions (2.3) and (4.1) into account.
We obtain

(4.3)

(4.4)

The function Tm
0 is completely defined by the finite relations (4.3)

and (4.4), but unlike the previous case of convective heat exchange
Mathematics and Mechanics 72 (2008) 92–101

(Section 3), specified on the faces, here Tm
0 already depends on the

transverse coordinate x3.
Equation (2.6) (k = 1), taking relations (4.2) and (2.7) into

account, can be integrated with respect to x3, in which case we
obtain equalities of the form (3.8) and (3.9), where

(4.5)

We express the derivative Tm
1,3 from relation (3.8) when k = 1 and

integrate the equation obtained with respect to the variable x3, after
which, taking conditions (2.7) and (4.1) and Eq. (3.9) into account,
we determine

(4.6)

where the function Q 0
1 is given by the equation

(4.7)

Equalities (4.3)–(4.7) and (3.9) completely define the functions
Tm

1 and Q m
1 .

Integrating Eq. (3.4) (k = 2) with respect to the variable x3, tak-
ing conditions (2.7) into account, we obtain relations (3.8)–(3.10),
where the function �m

2 is known by virtue of Eqs. (4.3)–(4.7). We
express the derivative Tm

k,3 from relation (3.8) and integrate the
equation obtained with respect to the variable x3, after which, tak-
ing conditions (2.7) and (4.1) into account, we determine
(4.8)

The function Q 0
k

is specified by an equation similar to (4.7)

(4.9)

It follows from relations (3.9), (3.10), (4.8) and (4.9) that the
functions Tm

k
and Q m

k
are known, and hence, from the scheme

(3.8)–(3.10), (4.8) and (4.9) we can determine the functions
Tm

k
and Q m

k
for a new value of k, etc.

Expansion (3.1), taking Eqs. (4.3)–(4.9) into account, possesses
the same asymptotic properties (with respect to the parameter �),
as in the case, considered in Section 3, when the convective heat
exchange on the faces of the plate is given. The only main differ-
ence is that, when the temperature T±∞ is given on both faces, the
first term (the function Tm

0 ) in expansion (3.1), acording to Eq. (4.3),
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depends on the transverse coordinate x3. (When the convective
heat exchange is given, according to Eq. (2.11), Tm

0 is independent of
x3.) Hence, it follows, in particular, that when the materials of the
layers are uniform over the thickness (�m

ij,3 = 0), by virtue of (4.3),
with an accuracy of O(�), the temperature distribution in each layer
in a transverse direction can be specified to be linear (piecewise-
linear for the whole packet); with an accuracy of O(�2), by virtue
of relations (4.3)–(4.6), the temperature over the thickness of the
layers can be specified to be quadratic (piecewise-quadratic for the
whole plate).

It follows from Eqs. (4.3) and (4.4) that when the same temper-
ature is set on both faces (T+∞ = T−∞), we obtain Tm

0 = T+∞ = T−∞, Q0 =
0, i.e. with an accuracy of O(�) we can assume the temperature to
be constant over the thickness of the laminated plate; if, moreover,
T+∞ = T−∞ = const, then according to relations (4.3)–(4.7), we obtain
Tm

1 = 0, and the temperature over the thickness of the laminated
packet, outside the limits of the boundary layer, can be assumed
to be constant with an accuracy of O(�2); if there are no inter-

nal heat sources (Qm ≡ 0), from relations (4.8), (4.9) and (3.10) we
additionally obtain Tm

k
≡ 0(k ≥ 1), i.e. in this case, outside the lim-

its of the boundary layer, the temperature in the plate is constant
(Tm∗ = Tm

0 = T+∞ = T−∞ = const).
The outer asymptotic expansions of the temperature con-

structed above can lead to discrepancies in boundary conditions
(1.10) on the end faces of the plate,6 to remove which one can
use the usual procedure1,6 of introducing in the neighbourhood of
the contour � inner “extended variables in the plane of the plate,
corresponding to x1 and x2, and constructing an inner asymptotic
expansion for the boundary layer with subsequent matching of
this expansion with the outer expansion. An investigation of these
problems is outside the scope of the present paper.

The outer asymptotic expansion obtained here and the esti-
mates of the accuracy of the representation of the temperature by
a linear or quadratic distribution over the thickness of the layers of
the plate, based on them, can be used in calculations of the strength
and pliability of thin-walled laminated structures, since the approx-
imate theories of the bending of plates used in practice (Kirchhoff’s,
Timoshenko’s, etc.7) only give acceptable accuracy outside the lim-
its of the boundary layer.7 Moreover, the asysmptotic expansion of
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the temperature constructed can also be employed in the asymp-
totic analysis of the thermoelastic behaviour of anisotropic plates.
For example, when investigating the asymptotic properties of the
solutions of uncoupled thermoelastic problems it was assumed,8,9

that the temperature in the plate outside the limits of the boundary
layer can be represented in the form (2.1), but this representation
was not strictly justified, since the asymptotic properties of the
solution of the heat-conduction problem were not investigated.
Our investigation has shown that the main temperature field in
an anisotropic plate in the most general case can be represented
by expansion (2.1), which confirms the internal harmony of the
uncoupled problem of thermoelasticity and the correctness of the
asymptotic approach for solving this class of problems.
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